## Exercise of Section 1.1

Written by Hsin-Jung, Wu.

1. Since the vertices in the same partite set is independent, then if a complete bipartite graph $K_{p, q}$ is complete graph, it must be $K_{1,1}$, i.e. it is $K_{2}$.
2. 


adjacency matrix of $P_{3}$

$$
\begin{aligned}
& \left.\left.\begin{array}{l} 
\\
A \\
B \\
C
\end{array} \begin{array}{ccc}
A & B & C \\
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \begin{array}{ccc}
A & C & B \\
A \\
C \\
B
\end{array}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), \begin{array}{c}
B \\
B \\
C \\
A
\end{array} \quad \begin{array}{cc}
0 & A \\
1 & 1 \\
0 & 1 \\
1 & 0
\end{array} 0\right), \\
& \left.\begin{array}{c} 
\\
B \\
A \\
C
\end{array} \quad \begin{array}{ccc}
B & A & C \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \begin{array}{c}
C \\
C \\
A
\end{array}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \begin{array}{l}
C \\
A \\
B
\end{array}\left(\begin{array}{lll}
C & A & B \\
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
\end{aligned}
$$

incidence matrix of $P_{3}$

$$
\begin{aligned}
& \begin{array}{l} 
\\
A \\
B \\
C
\end{array}\left(\begin{array}{cc}
P & Q \\
C & \left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right),
\end{array} \begin{array}{l}
A \\
C \\
C
\end{array}\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right), \begin{array}{l} 
\\
B \\
C \\
A
\end{array}\left(\begin{array}{ll}
P & Q \\
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right), \begin{array}{l} 
\\
B \\
A \\
C
\end{array} \begin{array}{cc}
P & Q \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right), \\
& \left.\begin{array}{l} 
\\
C \\
B \\
A
\end{array} \begin{array}{cc}
P & Q \\
\hline
\end{array}\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right), \begin{array}{cc}
P & Q \\
C \\
A \\
B
\end{array}\left(\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right), \begin{array}{l}
A \\
B \\
C
\end{array}\left(\begin{array}{ll}
Q & P \\
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right), \begin{array}{l}
A \\
C \\
B
\end{array} \begin{array}{cc}
Q & P \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right), \\
& \begin{array}{l} 
\\
B \\
C \\
A
\end{array}\left(\begin{array}{ll}
Q & P \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right), \begin{array}{l}
Q \\
B \\
A \\
C
\end{array}\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right), \begin{array}{l}
C \\
B \\
A
\end{array}\left(\begin{array}{ll}
Q & P \\
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right), \begin{array}{l}
C \\
A \\
B
\end{array}\left(\begin{array}{ll}
Q & P \\
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$



$$
\begin{aligned}
& u \\
& v \\
& w \\
& x \\
& y \\
& z
\end{aligned}\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$


adjacency matrix of $C_{6} \begin{gathered}a \\ \\ \\ b \\ c \\ d \\ d \\ e \\ d\end{gathered}\left(\begin{array}{cccccc}a & b & c & d & e & f \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$
3. $\left(\begin{array}{cc}O_{n, m} & E_{n} \\ E_{m} & O_{m, n}\end{array}\right)$ where $E_{n}$ is the $n$-by- $n$ matrix in which every entry is 1 and $O_{n, m}$ is the $n$-by- $m$ matrix in which every entry is 0 .
4. Since The complement of $\bar{G}$ is $G$, so we only need to prove Necessity Condition. Necessity. If $G \cong H$, then there is a bijection $f: V(G) \rightarrow V(H)$ such that

$$
\begin{array}{r}
u v \in E(G) \text { if and only if } f(u) f(v) \in E(H) \\
\Longrightarrow u v \notin E(G) \text { if and only if } f(u) f(v) \notin E(H) \\
\Longrightarrow u v \in E(\bar{G}) \text { if and only if } f(u) f(v) \in E(\bar{H})
\end{array}
$$

Thus $\bar{G} \cong \bar{H}$.
5. The answer is NO. Consider a disconnected graph $G$ which each component is cycle. Thus $G$ is not a cycle.

Note: The correct statement should be "If every vertex of a simple connected graph $G$ has degree 2, then $G$ is a cycle"
6. Since the edges with the same color induces $P_{4}$, thus the graph decomposes into copies of $P_{4}$.

7. Let the graph be $G$ and decomposes into path $P_{1}, P_{2}$ and $P_{3}$. For each vertex $v$, $d e g_{G}(v)=\operatorname{deg}_{P_{1}}(v)+\operatorname{deg}_{P_{2}}(v)+\operatorname{deg}_{P_{3}}(v)$. Since there are only two vertices of
degree odd (in fact, it is 1 ) in each path $P_{i}$, then there are at most six vertices of odd degree in $G$.
8. The graph left below is that decomposes into copies of $K_{1,3}$ and the other is that decomposes into copies of $P_{4}$.

9. Let the graph on the left below be $G$ and the other be $H$. It's easy to check the $H$ is the complement of $G$. Thus the proof is desired.

10. Let the simple disconnected graph be $G$, if $v$ and $u$ are in different components of $G$, then $v$ is adjacent to $u$ in $\bar{G}$. Otherwise, there exists a vertex $w$ such that $w$ and $v$ in the different components, then $u, w, v$ induced a path. So $\bar{G}$ is connected.

Note: Suppose $G-v$ has $r$ components, then $\bar{G}-v$ contains an induced subgraph $H$ isomorphic to complete $r$-partite graph, where $n(H)=n(G)$.
11. Label the vertices as below, since $A$ and $F$ are adjacent to every vertex, then $A$ and $F$ must be in the maximum clique and they are not belong to any inde-
pendent set. We know $B, C, D, E$ induces $P_{4}$, then there are at most 2 vertices in the maximum clique, and at most 2 vertices in the maximum independent set. Hence the size of maximum clique and maximum independent set is 4 and 2. It's easy to see that $A, C, F, D$ is clique and $B, D$ is independent set, thus

the maximum size is exactly 4 and 2 .
Note: When I write $a_{1}, \ldots, a_{k}$ induced a path $P_{k}$ that means $a_{i}$ is adjacent to $a_{i+1}$ for $i=1, \ldots, k-1$.
12. If it is bipartite, then $\{A, C\}$ and $\{B, D\}$ must be in different partite sets, say $P S_{1}$ and $P S_{2}$. But $E$ is adjacent to $A$ and $D$, then $E \notin P S_{1}$ and $E \notin P S_{2}$. Thus the Petersen Graph is not bipartite.

Note: By Theorem 1.2.18, Petersen Graph has odd cycle (see the graph below), then it is not bipartite.

Since Petersen Graph contain two $C_{5}$ and it's easy to see that there are at most 2 independent vertices in $C_{5}$, thus there are at most 4 independent vertices and
it is easy to see $\{B, E, H, G\}$ is independent.

13. For all $k$, let $O=(\underbrace{0, \ldots \ldots \ldots, 0}_{k})$. Let $B_{1}=\{v \mid v$ and $O$ differ in exactly odd position $\}$ and $B_{2}=\{v \mid v$ and $O$ differ in exactly even position $\}$. By definition, $B_{1}$ and $B_{2}$ are both independent, thus $G$ is bipartite.
14. Label each square of 8 -by- 8 checkerboard as $(i, j)$, where $1 \leq i, j \leq 8$. Set $(i, j)$ be black if $i+j$ is odd and set it white if $i+j$ is even. And set 1 -by- 2 and 2 -by- 1 rectangle as one white and black. We remove $(0,0)$ and $(8,8)$, then there 30 white squares and 32 black squares, so it can not be partitioned into 1 -by- 2 and 2-by-1 rectangles. If a bipartite graph with different size of partite sets, then it contains no perefect matching.

Note: The definition of perfect matching is Definition 3.1.1
15. $A \bigcap B=\emptyset ; A \bigcap C=\left\{K_{2}\right\} ; A \bigcap D=\left\{K_{2}\right\} ; B \bigcap C=\left\{K_{3}\right\}$; $B \bigcap D=\left\{C_{n} \mid n\right.$ is even $\} ; C \bigcap D=\emptyset ;$
16. Let the graph left below is the left graph $G$ and the other is $\bar{G}$.


Let the graph left below is the right graph $H$ and the other is $\bar{H}$.


Thus it is easy to see $\bar{G}$ is $2 C_{4}$ and $\bar{H}$ is $C_{8}$, then $\bar{G} \nsupseteq \bar{H}$. By Exercise 1.1.4, we have $G \nsubseteq H$.
17. Let the simple 7 -vertex graph with the property be $G$, thus every vertex of $\bar{G}$ has degree 2. Thus by Exercise 1.1.5, we have $\bar{G}$ is $C_{3}+C_{4}$ or $C_{7}$. Since $C_{3}+C_{4}$ and $C_{7}$ are not isomorphic, then there are exactly 2 isomorphism classes.
18. It is easy to see the bijection function $f:\left\{A_{i}\right\} \rightarrow\left\{B_{i}\right\}$ is isomorphic, then left graph is isomorphic to the middle.


Since each two vertex in the right graph either adjacent or have common neighbor, but non-adjacent vertices $A_{1}$ and $A_{7}$ has no common neighbors.

Note: After studying diameter (Definition 2.1.9), we cae use the diameter of right graph is 2 but the diameter of the left graph is 3 , so they are not isomorphic.
19. It is easy to see the function $f:\left\{A_{i}, B_{i}, C_{i}, D_{i}\right\} \rightarrow\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$ is isomorphism,
then middle graph is isomorphic to the right.


The graph below is the left graph. If a cycle has no orange(red) edges, then it is 10 -cycle. Hence a cylce $C$ which is smaller than 10 -cycle, then $C$ must have 2 green edges, 1 red edge and 1 orange edge. If it contains only one orange edge, say $C_{0} C_{3}$, then $C_{0} C_{3}$ belongs a 6 -cycle or 10 -cycle. If it contains only two orange edges, say $C_{0} C_{3}$ and $C_{3} C_{6}$, then they belong a 8 -cycle or 10-cycle. Otherwise, $C$ contains at least 6 edges. So the girth of left graph is 6 . However the girth of middle is at most 5(in fact, exactly 5), so they are not isomorphic.

20. It is easy to see the function $f:\left\{A_{i}, B_{i}\right\} \rightarrow\left\{C_{i}, D_{i}\right\}$ is isomorphism, then left graph is isomorphic to the right.


Similarly discussion as Exercise 1.1.19, we can get the girth of left graph is 6 but the girth of middle is 4 , so they are not isomorphic.
21. Since the vertices with the same color induced independent set and use two colors, thus both they are bipartite.

22. Let the graphs be $G_{1}, \ldots, G_{5}$ from left to right, thus consider $\overline{G_{1}}, \ldots, \overline{G_{5}}$. Clearly that $\overline{G_{1}}, \overline{G_{2}}, \overline{G_{5}}$ are isomorphic to $C_{7}$ and $\overline{G_{3}}, \overline{G_{4}}$ are isomorphic to $C_{3} \cup C_{4}$. By Exercise 1.1.4, we have $G_{1} \cong G_{2} \cong G_{5}$ and $G_{3} \cong G_{4}$.

23. (a) Obviously that $n>1$, so in all graph, consider the graphs below. Both their degree sequence is $\{2,2\}$, but the left is disconnect, the right one is

 connected. So we have the minimum is 2 .
(b) It is easy to see that for all loopless 2-vertex graph with the same degree sequence are isomorphic. For 3 -vertex graph, may assume it is connected and let the degree sequence $\{a, b, c\}$ with vertex $\{A, B, C\}$. Thus easy to calculate the number of edge $(\mathrm{BC})$, edge $(\mathrm{AC})$ and edge $(\mathrm{AB})$ are $(b+c-a) / 2$, $(a+c-b) / 2$ and $(a+b-c) / 2$. Hence this the only one way to drawing $3-$ vertex graph. Now consider the graphs below. Both their degree sequence is $\{2,2,2,2\}$, but the left is disconnect, the right one is connected. So we have the minimum is 4 .

(c)
24. First of all, we have to know Petersen graph has 5-cycle, 6-cycle, 8-cycle and 9-cycle but no 7-cycle(by Exercise 1.1.25).

Consider 6 -cycle of Petersen graph induced by $v_{0}, \ldots, v_{5}$, by Proposition 1.1.38 we know for $i=0,1,2 v_{i}$ and $v_{i+3}$ have the common neighbor $u_{i}$. But for each $u_{i}$, they are not in the 6 -cycle, thus there is only one vertex $w$ which is not adjacent to this 6 -cycle and $w, u_{0}, u_{1}, u_{2}$ induced a claw. So we can draw Petersen graph by putting the claw in the center of 6 -cycle. For example 6 -cycle $\{12,34,51,23,41,35\}$, and claw $\{31,45,24,25\}$.


Next consider the 8 -cycle induced by $\left\{v_{0}, \ldots v_{7}\right\}$ and the other two vertices as $w_{1}, w_{2}$. Since Petersen graph is 3 -regular, then by Proposition 1.1.38 and Corollary 1.1.40 we have $v_{i}, v_{i+2}, v_{i+4}, v_{i+6}$, for $i=0,1$. So we may assume $v_{0}, v_{2}, v_{4}, v_{6}$ are not neighbors of $w_{1}, w_{2}$, thus we get $\left(v_{0}, v_{4}\right),\left(v_{2}, v_{6}\right),\left(w_{1}, w_{2}\right)$ are edges and $v_{1}, w_{1}, v_{3}, v_{5}, w_{2}, v_{7}$ induced $P_{3}$. So we can draw Petersen graph by putting the edge $\left(w_{1}, w_{2}\right)$ in the center of 8 -cycle. For example 8 -cycle $\{12,34,51,24,13,52,41,35\}$ and edge $\{23,45\}$.

Last, for the 9 -cycle induced by $\left\{v_{0}, \ldots v_{8}\right\}$ and the remain vertex as $w$. May assume $v_{0}$ is adjacent to $w$, by Corollary 1.1.40 and Petersen graph has no 7 -cycle, then the other two neighbor of $w$ must be $v_{3}, v_{6}$ and $\left(v_{1}, v_{5}\right),\left(v_{2}, v_{7}\right),\left(v_{4}, v_{8}\right)$ are edges. So we can draw Petersen graph by putting 45 in the center of 9-cycle. For example 9-cycle $\{12,34,51,23,41,52,13,24,35\}$ and 45.

25. Suppose Petersen Graph has a cycle of length 7, may assume this is induced by $a_{1}, \ldots, a_{7}$ Since $a_{1}$ and $a_{4}$ are not adjacent, by Proposition 1.1.38 they has
exactly one comment neighbor, say $p$. But $a_{1}$ and $a_{5}$ are also not adjacent, then they still has only one comment neighbor, say $q$. If $p=q$, then $p, a_{3}$ and $a_{4}$ induced a 3 -cycle, but by Corollary 1.1.40 Petersen Graph has girth 5, so we have a contradition. If $p \neq q$, then $p, q, a_{2}$ and $a_{7}$ are neighbors of $a_{1}$, thus $\operatorname{deg}\left(a_{1}\right)=4$, a contradiction. Hence Petersen Graph has no cycle of length 7 .

Note: When I write $v_{1} \ldots, v_{k}$ induced a cycle $C_{k}$, that means $v_{i}$ is adjacent to $v_{i+1}$ for $i=1, \ldots, k-1$ and $v_{1}$ adjacent to $v_{k}$.
26. Fixed a vertex $v$, let $u_{1}, \ldots, u_{k}$ be neighbors of $v$. Since the graph has girth 4, then $\left\{u_{1}, \ldots, u_{k}\right\}$ is an independent set. Thus there $u_{1}$ has $k-1$ neighbors (say $w_{1}, \ldots, w_{k-1}$ ) which are different from $v, u_{2}, \ldots, u_{k}$. So there are at least $1+k+(k-1)=2 k$ vertices.

If it has exactly $2 k$ vertices, thus $w_{1}, \ldots, w_{k-1}$ must also be the neighbors of $u_{2}, \ldots u_{k}$. That means $G$ is biclique $K_{k, k}$, where one partite set is $\left\{v, w_{1}, \ldots, w_{k-1}\right\}$ and the other is $\left\{u_{1}, \ldots, u_{k}\right\}$.
27. Fixed a vertex $v$, let $u_{1}, \ldots, u_{k}$ be neighbors of $v$. Since the graph has girth 5, then $\left\{u_{1}, \ldots, u_{k}\right\}$ is an independent set. Let the $k-1$ neighbors of $u_{i}$ be $w_{i, 1}, \ldots, w_{i, k-1}$. If $u_{i}$ and $u_{j}$ has another neighbor different from $v$, then it has 4 -cycle, a contradiction. So there are at least $1+k+k(k-1)=k^{2}+1$ vertices. For $k=2, C_{5}$. For $k=3$, Petersen Graph.
28. Clearly the graph is simple, then it has no 1-cycle and 2-cycle. A 3-cycle would need three pairwise disjoint $k$-sets, that means we need at least $3 k$ elements. But $3 k>2 k+1$ for $k \geq 3$, thus there is no 3 -cycle.

For each two non-adjacent vertices $S_{1}, S_{2}$, there are at least $k+1$ elements in $S_{1} \bigcup S_{2}$, then there are at most $k$ elements without choosing, that is $S_{1}$ and $S_{2}$ has at most one neighbor. So there is no 4-cycle.

If there exists vertices $A_{1}, \ldots, A_{5}$ induced 5 -cycle. W.L.O.G, may assume $A_{1}=$
$\{1, \ldots, k\}$ and $A_{2}=\{k+1, \ldots, 2 k\}$. Thus $A_{3}$ must be $\{1, \ldots, k, 2 k+1\} \backslash\left\{t_{1}\right\}$, $A_{5}$ must be $\{k+1, \ldots, 2 k, 2 k+1\} \backslash\left\{t_{2}\right\}$. Since each element of $A_{4}$ must be choosen from $\{1,2, \ldots, 2 k+1\} \backslash\left(A_{3} \bigcup A_{5}\right)=\left\{t_{1}, t_{2}\right\}$. But $A_{4}$ must contain $k>2$ elements, a contradiction.

Consider the 6 -cycle $\{1, \ldots, k\},\{k+1, \ldots 2 k\},\{1, \ldots, k-1,2 k+1\},\{k, \ldots, 2 k-$ $1\}\{1, \ldots, k-1,2 k\},\{k+1, \ldots, 2 k-1,2 k+1\}$, so the girth is 6 .
29. Fixed one person, say $P$, then he must have 3 acquaintances or 3 strangers. If he has 3 acquaintances, say $A_{1}, A_{2}, A_{3}$, if at least two of $A_{1}, A_{2}, A_{3}$ (say $A_{1}, A_{2}$ ) are acquaintance, then $P, A_{1}, A_{2}$ are mutual acquaintances. Otherwise, $A_{1}, A_{2}, A_{3}$ are mutual strangers. Similarly discussion for $P$ has 3 strangers. So we complete the proof.
30. First of all, we know $A$ is symmetric. Since $G$ is a simple graph, then $A_{i, j}=$ 1 or 0 depend on $v_{i}$ adjacent to $v_{j}$ or not. Thus $i$-diagonal entry in $A^{2}$ is $\sum_{j=1}^{n} A_{i, j}^{2}=\sum_{j=1}^{n} A_{i, j}$, since $A_{i, j}=A_{i, j}^{2}$. That means $i$-diagonal entry is the number of neighbors of $v_{i}$, thus it is the degree of $v_{i}$.
The $i$-diagonal entry in $M M^{T}$ is $\sum_{j=1}^{m} M_{i, j}^{2}=\sum_{j=1}^{m} M_{i, j}$, since $M_{i, j}=M_{i, j}^{2}$. That means $i$-diagonal entry is the number of edges with endpoint $v_{i}$, thus it is also the degree of $v_{i}$.
If $i \neq j, A_{i, j}$ is the number of common neighbor of $v_{i}$ and $v_{j}$. Since $A_{i, j}=$ $\sum_{k=1}^{n} A_{i, k} A_{k, j}$, and $A_{i, k} A_{k, j}=1$ if and only if $A_{i, k}=1=A_{k, j}$. That means $v_{k}$ is adjacent to $v_{i}$ and $v_{j}$.
If $i \neq j, M M_{i, j}^{T}$ is the number of edges with endpoints $v_{i}$ and $v_{j}$. Since $A_{i, j}=$ $\sum_{k=1}^{m} M_{i, k} M_{k, j}^{T}$, and $M_{i, k} M_{k, j}^{T}=1$ if and only if $M_{i, k}=1=M_{k, j}^{T}$. That means $v_{i}$ and $v_{j}$ are both endpoints of $e_{k}$.

Note: For $i \neq j$, we have $M M_{i, j}^{T}=A_{i, j}$.
31. Necessity: Since $G \cong \bar{G}$, then $e(G)=e(\bar{G})$. But the number of $e(G)+e(\bar{G})=$
$n(n-1) / 2$, thus $e(G)=n(n-1) / 4$. Hence $n$ or $n-1$ must be divisible by 4 . Sufficiency: Suppose $n=4 m$, let graph $G_{m}$ has follows:

$$
\begin{aligned}
& V\left(G_{m}\right)=\left\{a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}, c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{m},\right\} \\
& E\left(G_{m}\right)=\left\{\left(a_{i}, b_{j}\right),\left(b_{i}, c_{j}\right),\left(c_{i}, d_{j}\right) \mid \forall i, j\right\} \bigcup\left\{\left(a_{i}, a_{j}\right),\left(d_{i}, d_{j}\right) \mid \forall i \neq j\right\}
\end{aligned}
$$

Let $V\left(G_{m}\right)=V(H)$ and $f: V\left(G_{m}\right) \rightarrow V(H)$, where

$$
f\left(a_{i}\right)=b_{i}, f\left(b_{i}\right)=d_{i}, f\left(c_{i}\right)=a_{i}, f\left(d_{i}\right)=c_{i}
$$

then we have

$$
\begin{gathered}
E(H)=\left\{\left(f\left(a_{i}\right), f\left(b_{j}\right)\right),\left(f\left(b_{i}\right), f\left(c_{j}\right)\right),\left(f\left(c_{i}\right), f\left(d_{j}\right)\right) \mid \forall i, j\right\} \\
\bigcup\left\{\left(f\left(a_{i}\right), f\left(a_{j}\right)\right),\left(f\left(d_{i}\right), f\left(d_{j}\right)\right) \mid \forall i \neq j\right\} \\
\Longrightarrow E(H)=\left\{\left(b_{i}, d_{j}\right),\left(d_{i}, a_{j}\right),\left(a_{i}, c_{j}\right) \mid \forall i, j\right\} \bigcup\left\{\left(b_{i}, b_{j}\right),\left(c_{i}, c_{j}\right) \mid \forall i \neq j\right\}
\end{gathered}
$$

It is easy to see that bijection $f$ is isomorphic, then $H \cong \overline{G_{m}}$.
If $n=4 m+1$, let graph $G p_{m}$ where $V\left(G p_{m}\right)=V\left(G_{m}\right)+\{p\}$ and $E\left(G p_{m}\right)=$ $E\left(G_{m}\right) \bigcup\left\{\left(p, a_{i}\right),\left(p, d_{i}\right) \mid \forall i\right\}$. Using the same function $f$ above with $f(p)=p$. It is easy to see that bijection $f$ is isomorphic, then $H \cong \overline{G p_{m}}$.

The graph left below is $G_{3}$ and right below is $G p_{3}$

32. If $K_{m, n}$ can decompose into two isomorphic graph $G_{1}$ and $G_{2}$ if and only if $m \times n$ is even.

Necessity: Since $e\left(G_{1}\right)=e\left(G_{2}\right)$ and $e\left(G_{1}\right)+e\left(G_{2}\right)=m n$, thus $e\left(G_{1}\right)=m n / 2$. Hence $m \times n$ is even.

Sufficiency: May assume $m$ is even, then $K_{m, n}$ can decompose into two $K_{m / 2, n}$.
33. Each $C_{n}$ is colored by different colors.

34. I use the middle graph below Definition 1.1.36 to solve the first question, and the left graph to solve the second.

35. Necessity: Let $K_{n}$ decomposite 3 pairwise isomorphic $G_{1} \cong G_{2} \cong G_{3}$, then $\left|E\left(G_{i}\right)\right|=\left|E\left(K_{n}\right)\right| / 3=n(n-1) / 6$ is integer. Since $n(n-1)$ must be even, thus $n(n-1) / 3$ must be integer. However only one number of $n+1, n, n-1$ is divisible by 3 , thus we have $n+1$ is not divisible by 3 .

Sufficiency: Let the vertex of $K_{n}$ be $p_{0}, p_{1}, \ldots, p_{n-1}$, if $n=3 k$, for $i=0,1,2$

$$
\begin{gathered}
V\left(G_{i}\right)=\left\{p_{t}, p_{t+1} \mid t=3 j+i, 0 \leq t<n\right\} \\
E\left(G_{i}\right)=\left\{\left(p_{t}, p_{k}\right),\left(p_{t}, p_{t+1}\right) \mid t=3 j+i, k=3 m+i, 0 \leq t, k<n\right\}
\end{gathered}
$$

Thus easily to see $f_{i}: V\left(G_{i}\right) \rightarrow V\left(G_{i+1}\right)$ where $f_{i}\left(p_{t}\right)=p_{t+1}$ is an isomorphism.
if $n=3 k+1$, for $i=0,1,2$

$$
V\left(G_{i}\right)=\left\{p_{t}, p_{t+1} \mid t=3 j+i, 0<t<n\right\} \cup\left\{p_{0}\right\}
$$

$$
E\left(G_{i}\right)=\left\{\left(p_{t}, p_{k}\right),\left(p_{t}, p_{t+1}\right),\left(p_{0}, p_{t}\right) \mid t=3 j+i, k=3 m+i, 0<t, m<n\right\}
$$

Thus easily to see $f_{i}: V\left(G_{i}\right) \rightarrow V\left(G_{i+1}\right)$ where $f_{i}\left(p_{t}\right)=p_{t+1}$ for $t>0$ and $f_{i}\left(p_{0}\right)=p_{0}$ is an isomorphism.

The graph below are examples for $n=6,7$.

36. If $K_{n}$ decompose into triangles, then the number of triangles is $E\left(K_{n}\right) / 3=$ $n(n-1) / 6$. Hence $n$ must be $6 k+1,6 k+3,6 k+4$ or $6 k$. But each vertex $v$ contributes 2 edges in triangle, then $\operatorname{deg}(v)=n-1$ must be even, So $n=6 k+1$ or $6 k+3$.
37.
38.
39.
40. It's easy to see the automorphism of $P_{n}, C_{n}$ and $K_{n}$ is $2,2 n$ and $n!$.
41.
42.
43.
45. First of all, let $E g(u, v)$ be the minimum length of cycle which contains edge $u v$ and $E G(v)=\{E g(u, v) \mid u \in N(v)\}$. It is clearly that if there exists an automorphism $f$ with $f(p)=q$ if and only if $E G(p)=E G(q)$.

Now consider the graph below and given automorphism $f$. Since the graph below contains only two 3 -cycle $\{A, B, C\}$ and $\{H, I, K\}$, we only need to check $E G(A), E G(B), E G(C), E G(H), E G(I), E G(K)$. Thus by carefully counting, we have

$$
\begin{aligned}
& E G(A)=\{3,6,7\} ; E G(B)=\{3,4,7\} ; E G(C)=\{3,4,6\} \\
& E G(H)=\{3,5,6\} ; E G(K)=\{3,4,6\} ; E G(I)=\{3,4,5\}
\end{aligned}
$$

So $f(A)=A, f(B)=B, f(H)=H$ and $f(I)=I$ and it is east to check the other vertex $v$ such that $f(v)=v$. Hence $f$ must be identity.

46.
47.

