
Exercise of Section 1.1

Written by Hsin-Jung, Wu.

1. Since the vertices in the same partite set is independent, then if a complete

bipartite graph Kp,q is complete graph, it must be K1,1, i.e. it is K2.

2.
A B CP Q

adjacency matrix of P3

A B C
A
B
C





0 1 0
1 0 1
0 1 0




,

A C B
A
C
B





0 0 1
0 0 1
1 1 0




,

B C A
B
C
A





0 1 1
1 0 0
1 0 0




,

B A C
B
A
C





0 1 1
1 0 0
1 0 0




,

C B A
C
B
A





0 1 0
1 0 1
0 1 0




,

C A B
C
A
B





0 0 1
0 0 1
1 1 0





incidence matrix of P3

P Q
A
B
C





1 0
1 1
0 1




,

P Q
A
C
B





1 0
0 1
1 1




,

P Q
B
C
A





1 1
0 1
1 0




,

P Q
B
A
C





1 1
1 0
0 1




,

P Q
C
B
A





0 1
1 1
1 0




,

P Q
C
A
B





0 1
1 0
1 1




,

Q P
A
B
C





0 1
1 1
1 0




,

Q P
A
C
B





0 1
1 0
1 1




,

Q P
B
C
A





1 1
1 0
0 1




,

Q P
B
A
C





1 1
0 1
1 0




,

Q P
C
B
A





1 0
1 1
0 1




,

Q P
C
A
B





1 0
0 1
1 1





u v w x y z

adjacency matrix of P6

u v w x y z
u
v
w
x
y
z











0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0










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a

bc

d

e f
adjacency matrix of C6

a b c d e f
a
b
c
d
e
f











0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0











3.

(
On,m En

Em Om,n

)

where En is the n-by-n matrix in which every entry is 1 and

On,m is the n-by-m matrix in which every entry is 0.

4. Since The complement of G is G, so we only need to prove Necessity Condition.

Necessity. If G ∼= H , then there is a bijection f : V (G) → V (H) such that

uv ∈ E(G) if and only if f(u)f(v) ∈ E(H)

=⇒uv /∈ E(G) if and only if f(u)f(v) /∈ E(H)

=⇒uv ∈ E(G) if and only if f(u)f(v) ∈ E(H)

Thus G ∼= H.

5. The answer is NO. Consider a disconnected graph G which each component is

cycle. Thus G is not a cycle.

Note: The correct statement should be “If every vertex of a simple connected

graph G has degree 2, then G is a cycle”

6. Since the edges with the same color induces P4, thus the graph decomposes into

copies of P4.

7. Let the graph be G and decomposes into path P1, P2 and P3. For each vertex v,

degG(v) = degP1
(v) + degP2

(v) + degP3
(v). Since there are only two vertices of
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degree odd (in fact, it is 1) in each path Pi, then there are at most six vertices

of odd degree in G.

8. The graph left below is that decomposes into copies of K1,3 and the other is

that decomposes into copies of P4.

9. Let the graph on the left below be G and the other be H . It’s easy to check the

H is the complement of G. Thus the proof is desired.

A B

D C

E F

H G

A F

C H

G D

E B

10. Let the simple disconnected graph be G, if v and u are in different components

of G, then v is adjacent to u in G. Otherwise, there exists a vertex w such

that w and v in the different components, then u, w, v induced a path. So G is

connected.

Note: Suppose G − v has r components, then G − v contains an induced

subgraph H isomorphic to complete r-partite graph, where n(H) = n(G).

11. Label the vertices as below, since A and F are adjacent to every vertex, then

A and F must be in the maximum clique and they are not belong to any inde-
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pendent set. We know B, C, D, E induces P4, then there are at most 2 vertices

in the maximum clique, and at most 2 vertices in the maximum independent

set. Hence the size of maximum clique and maximum independent set is 4 and

2. It’s easy to see that A, C, F, D is clique and B, D is independent set, thus

the maximum size is exactly 4 and 2.

E

A

C

F

B D

Note: When I write a1, . . . , ak induced a path Pk that means ai is adjacent to

ai+1 for i = 1, . . . , k − 1.

12. If it is bipartite, then {A, C} and {B, D} must be in different partite sets, say

PS1 and PS2. But E is adjacent to A and D, then E /∈ PS1 and E /∈ PS2.

Thus the Petersen Graph is not bipartite.

Note: By Theorem 1.2.18, Petersen Graph has odd cycle (see the graph below),

then it is not bipartite.

Since Petersen Graph contain two C5 and it’s easy to see that there are at most

2 independent vertices in C5, thus there are at most 4 independent vertices and

it is easy to see {B, E, H, G} is independent.

A

B

C

D

E

JI

H

G

F
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13. For all k, let O = (0, . . . . . . . . . , 0
︸ ︷︷ ︸

k

). Let B1 = {v|v and O differ in exactly odd position}

and B2 = {v|v and O differ in exactly even position}. By definition, B1 and B2

are both independent, thus G is bipartite.

14. Label each square of 8-by-8 checkerboard as (i, j), where 1 ≤ i, j ≤ 8. Set (i, j)

be black if i + j is odd and set it white if i + j is even. And set 1-by-2 and

2-by-1 rectangle as one white and black. We remove (0, 0) and (8, 8), then there

30 white squares and 32 black squares, so it can not be partitioned into 1-by-2

and 2-by-1 rectangles. If a bipartite graph with different size of partite sets,

then it contains no perefect matching.

Note: The definition of perfect matching is Definition 3.1.1

15. A
⋂

B = ∅; A
⋂

C = {K2}; A
⋂

D = {K2}; B
⋂

C = {K3};

B
⋂

D = {Cn|n is even}; C
⋂

D = ∅;

16. Let the graph left below is the left graph G and the other is G.

D

C

BA

H

G

F E

D

C

BA

H

G

F E

Let the graph left below is the right graph H and the other is H.

5



d

c

ba

h

g

f e

d

c

ba

h

g

f e

Thus it is easy to see G is 2C4 and H is C8, then G ≇ H . By Exercise 1.1.4,

we have G ≇ H .

17. Let the simple 7-vertex graph with the property be G, thus every vertex of G

has degree 2. Thus by Exercise 1.1.5, we have G is C3 +C4 or C7. Since C3 +C4

and C7 are not isomorphic, then there are exactly 2 isomorphism classes.

18. It is easy to see the bijection function f : {Ai} → {Bi} is isomorphic, then left

graph is isomorphic to the middle.

A1 A2

A4 A3

A5 A6

A8 A7

B8 B2

B3

B6

B1

B5

B4

B7

Since each two vertex in the right graph either adjacent or have common neigh-

bor, but non-adjacent vertices A1 and A7 has no common neighbors.

Note : After studying diameter (Definition 2.1.9), we cae use the diameter

of right graph is 2 but the diameter of the left graph is 3, so they are not

isomorphic.

19. It is easy to see the function f : {Ai, Bi, Ci, Di} → {ai, bi, ci, di} is isomorphism,
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then middle graph is isomorphic to the right.

A0

A1

A2A3

A4

B0

B1

B2B3

B4

C0

C1

C2 C3

C4

D0

D1

D2 D3

D4

a0

a1

a2a3

a4

b0

b1

b2b3

b4

c0

c1

c2 c3

c4

d0

d1

d2 d3

d4

The graph below is the left graph. If a cycle has no orange(red) edges, then it

is 10-cycle. Hence a cylce C which is smaller than 10-cycle, then C must have

2 green edges, 1 red edge and 1 orange edge. If it contains only one orange

edge, say C0C3, then C0C3 belongs a 6-cycle or 10-cycle. If it contains only

two orange edges, say C0C3 and C3C6, then they belong a 8-cycle or 10-cycle.

Otherwise, C contains at least 6 edges. So the girth of left graph is 6. However

the girth of middle is at most 5(in fact, exactly 5), so they are not isomorphic.

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

20. It is easy to see the function f : {Ai, Bi} → {Ci, Di} is isomorphism, then left

graph is isomorphic to the right.
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A0

A1

A2

A3

A4

A5

A6

A7

B0

B1

B2

B3

B4

B5

B6

B7

C0

C1

C2

C3D3

D6

D1

D4

C4

C5

C6

C7 D7

D2

D5

D0

Similarly discussion as Exercise 1.1.19, we can get the girth of left graph is 6

but the girth of middle is 4, so they are not isomorphic.

21. Since the vertices with the same color induced independent set and use two

colors, thus both they are bipartite.

22. Let the graphs be G1, . . . , G5 from left to right, thus consider G1, . . . , G5.

Clearly that G1, G2, G5 are isomorphic to C7 and G3, G4 are isomorphic to

C3

⋃
C4. By Exercise 1.1.4, we have G1

∼= G2
∼= G5 and G3

∼= G4.
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23. (a) Obviously that n > 1, so in all graph, consider the graphs below. Both

their degree sequence is {2, 2}, but the left is disconnect, the right one is

connected. So we have the minimum is 2.

(b) It is easy to see that for all loopless 2-vertex graph with the same degree

sequence are isomorphic. For 3-vertex graph, may assume it is connected

and let the degree sequence {a, b, c} with vertex {A, B, C}. Thus easy to

calculate the number of edge(BC), edge(AC) and edge(AB) are (b+c−a)/2,

(a + c− b)/2 and (a + b− c)/2. Hence this the only one way to drawing 3-

vertex graph. Now consider the graphs below. Both their degree sequence

is {2, 2, 2, 2}, but the left is disconnect, the right one is connected. So we

have the minimum is 4.

(c)

24. First of all, we have to know Petersen graph has 5-cycle, 6-cycle, 8-cycle and

9-cycle but no 7-cycle(by Exercise 1.1.25).

Consider 6-cycle of Petersen graph induced by v0, . . . , v5, by Proposition 1.1.38

we know for i = 0, 1, 2 vi and vi+3 have the common neighbor ui. But for

each ui, they are not in the 6-cycle, thus there is only one vertex w which is

not adjacent to this 6-cycle and w, u0, u1, u2 induced a claw. So we can draw

Petersen graph by putting the claw in the center of 6-cycle. For example 6-cycle

{12, 34, 51, 23, 41, 35}, and claw {31, 45, 24, 25}.
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13 12

3451

23

41 35

45

2425

13

12

51 41

45

34

24

23

25

35

Next consider the 8-cycle induced by {v0, . . . v7} and the other two vertices

as w1, w2. Since Petersen graph is 3-regular, then by Proposition 1.1.38 and

Corollary 1.1.40 we have vi, vi+2, vi+4, vi+6, for i = 0, 1. So we may assume

v0, v2, v4, v6 are not neighbors of w1, w2, thus we get (v0, v4), (v2, v6), (w1, w2)

are edges and v1, w1, v3, v5, w2, v7 induced P3. So we can draw Petersen graph

by putting the edge (w1, w2) in the center of 8-cycle. For example 8-cycle

{12, 34, 51, 24, 13, 52, 41, 35} and edge {23, 45}.

Last, for the 9-cycle induced by {v0, . . . v8} and the remain vertex as w. May as-

sume v0 is adjacent to w, by Corollary 1.1.40 and Petersen graph has no 7-cycle,

then the other two neighbor of w must be v3, v6 and (v1, v5), (v2, v7), (v4, v8) are

edges. So we can draw Petersen graph by putting 45 in the center of 9-cycle.

For example 9-cycle {12, 34, 51, 23, 41, 52, 13, 24, 35} and 45.

45 23

34

51

24

13

52

41

35

12

45

12

34

51

23

41 52

13

24

35

25. Suppose Petersen Graph has a cycle of length 7, may assume this is induced

by a1, . . . , a7 Since a1 and a4 are not adjacent, by Proposition 1.1.38 they has
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exactly one comment neighbor, say p. But a1 and a5 are also not adjacent,

then they still has only one comment neighbor, say q. If p = q, then p, a3 and

a4 induced a 3-cycle, but by Corollary 1.1.40 Petersen Graph has girth 5, so

we have a contradition. If p 6= q, then p, q, a2 and a7 are neighbors of a1, thus

deg(a1) = 4, a contradiction. Hence Petersen Graph has no cycle of length 7.

Note: When I write v1 . . . , vk induced a cycle Ck, that means vi is adjacent to

vi+1 for i = 1, . . . , k − 1 and v1 adjacent to vk.

26. Fixed a vertex v, let u1, . . . , uk be neighbors of v. Since the graph has girth

4, then {u1, . . . , uk} is an independent set. Thus there u1 has k − 1 neighbors

(say w1, . . . , wk−1) which are different from v, u2, . . . , uk. So there are at least

1 + k + (k − 1) = 2k vertices.

If it has exactly 2k vertices, thus w1, . . . , wk−1 must also be the neighbors of

u2, . . . uk. That means G is biclique Kk,k, where one partite set is {v, w1, . . . , wk−1}

and the other is {u1, . . . , uk}.

27. Fixed a vertex v, let u1, . . . , uk be neighbors of v. Since the graph has girth

5, then {u1, . . . , uk} is an independent set. Let the k − 1 neighbors of ui be

wi,1, . . . , wi,k−1. If ui and uj has another neighbor different from v, then it has

4-cycle, a contradiction. So there are at least 1+ k + k(k− 1) = k2 +1 vertices.

For k = 2, C5. For k = 3, Petersen Graph.

28. Clearly the graph is simple, then it has no 1-cycle and 2-cycle. A 3-cycle would

need three pairwise disjoint k-sets, that means we need at least 3k elements.

But 3k > 2k + 1 for k ≥ 3, thus there is no 3-cycle.

For each two non-adjacent vertices S1, S2, there are at least k + 1 elements in

S1

⋃
S2, then there are at most k elements without choosing, that is S1 and S2

has at most one neighbor. So there is no 4-cycle.

If there exists vertices A1, . . . , A5 induced 5-cycle. W.L.O.G, may assume A1 =

11



{1, . . . , k} and A2 = {k + 1, . . . , 2k}. Thus A3 must be {1, . . . , k, 2k + 1}\{t1},

A5 must be {k + 1, . . . , 2k, 2k + 1}\{t2}. Since each element of A4 must be

choosen from {1, 2, . . . , 2k + 1}\(A3

⋃
A5) = {t1, t2}. But A4 must contain

k > 2 elements, a contradiction.

Consider the 6-cycle {1, . . . , k}, {k+1, . . . 2k}, {1, . . . , k−1, 2k+1}, {k, . . . , 2k−

1} {1, . . . , k − 1, 2k}, {k + 1, . . . , 2k − 1, 2k + 1}, so the girth is 6.

29. Fixed one person, say P , then he must have 3 acquaintances or 3 strangers. If he

has 3 acquaintances, say A1, A2, A3, if at least two of A1, A2, A3(say A1, A2) are

acquaintance, then P, A1, A2 are mutual acquaintances. Otherwise, A1, A2, A3

are mutual strangers. Similarly discussion for P has 3 strangers. So we complete

the proof.

30. First of all, we know A is symmetric. Since G is a simple graph, then Ai,j =

1 or 0 depend on vi adjacent to vj or not. Thus i-diagonal entry in A2 is
n∑

j=1

A2
i,j =

n∑

j=1

Ai,j, since Ai,j = A2
i,j. That means i-diagonal entry is the number

of neighbors of vi, thus it is the degree of vi.

The i-diagonal entry in MMT is
m∑

j=1

M2
i,j =

m∑

j=1

Mi,j, since Mi,j = M2
i,j . That

means i-diagonal entry is the number of edges with endpoint vi, thus it is also

the degree of vi.

If i 6= j, Ai,j is the number of common neighbor of vi and vj. Since Ai,j =
n∑

k=1

Ai,kAk,j, and Ai,kAk,j = 1 if and only if Ai,k = 1 = Ak,j. That means vk is

adjacent to vi and vj .

If i 6= j, MMT
i,j is the number of edges with endpoints vi and vj . Since Ai,j =

m∑

k=1

Mi,kM
T
k,j, and Mi,kM

T
k,j = 1 if and only if Mi,k = 1 = MT

k,j. That means vi

and vj are both endpoints of ek.

Note: For i 6= j, we have MMT
i,j = Ai,j.

31. Necessity: Since G ∼= G, then e(G) = e(G). But the number of e(G) + e(G) =
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n(n − 1)/2, thus e(G) = n(n − 1)/4. Hence n or n − 1 must be divisible by 4.

Sufficiency: Suppose n = 4m, let graph Gm has follows:

V (Gm) = {a1, . . . , am, b1, . . . , bm, c1, . . . , cm, d1, . . . , dm, }.

E(Gm) = {(ai, bj), (bi, cj), (ci, dj)|∀i, j}
⋃

{(ai, aj), (di, dj)|∀i 6= j}

Let V (Gm) = V (H) and f : V (Gm) → V (H), where

f(ai) = bi, f(bi) = di, f(ci) = ai, f(di) = ci

then we have

E(H) = {(f(ai), f(bj)), (f(bi), f(cj)), (f(ci), f(dj))|∀i, j}

⋃

{(f(ai), f(aj)), (f(di), f(dj))|∀i 6= j}

=⇒ E(H) = {(bi, dj), (di, aj), (ai, cj)|∀i, j}
⋃

{(bi, bj), (ci, cj)|∀i 6= j}

It is easy to see that bijection f is isomorphic, then H ∼= Gm.

If n = 4m + 1, let graph Gpm where V (Gpm) = V (Gm) + {p} and E(Gpm) =

E(Gm)
⋃
{(p, ai), (p, di)|∀i}. Using the same function f above with f(p) = p. It

is easy to see that bijection f is isomorphic, then H ∼= Gpm.

The graph left below is G3 and right below is Gp3

a1 b1
c1 d1

a2 b2
c2 d2

a3 b3
c3 d3

a1 b1
c1 d1

a2 b2
c2 d2

a3 b3
c3 d3

p

32. If Km,n can decompose into two isomorphic graph G1 and G2 if and only if

m × n is even.
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Necessity: Since e(G1) = e(G2) and e(G1) + e(G2) = mn, thus e(G1) = mn/2.

Hence m × n is even.

Sufficiency: May assume m is even, then Km,n can decompose into two Km/2,n.

33. Each Cn is colored by different colors.

34. I use the middle graph below Definition 1.1.36 to solve the first question, and

the left graph to solve the second.

35. Necessity: Let Kn decomposite 3 pairwise isomorphic G1
∼= G2

∼= G3, then

|E(Gi)| = |E(Kn)|/3 = n(n − 1)/6 is integer. Since n(n − 1) must be even,

thus n(n− 1)/3 must be integer. However only one number of n + 1, n, n− 1 is

divisible by 3, thus we have n + 1 is not divisible by 3.

Sufficiency: Let the vertex of Kn be p0, p1, . . . , pn−1, if n = 3k, for i = 0, 1, 2

V (Gi) = {pt, pt+1

∣
∣t = 3j + i, 0 ≤ t < n}

E(Gi) = {(pt, pk), (pt, pt+1)
∣
∣t = 3j + i, k = 3m + i, 0 ≤ t, k < n}

Thus easily to see fi : V (Gi) → V (Gi+1) where fi(pt) = pt+1 is an isomorphism.
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if n = 3k + 1, for i = 0, 1, 2

V (Gi) = {pt, pt+1

∣
∣t = 3j + i, 0 < t < n} ∪ {p0}

E(Gi) = {(pt, pk), (pt, pt+1), (p0, pt)
∣
∣t = 3j + i, k = 3m + i, 0 < t, m < n}

Thus easily to see fi : V (Gi) → V (Gi+1) where fi(pt) = pt+1 for t > 0 and

fi(p0) = p0 is an isomorphism.

The graph below are examples for n = 6, 7.
p0

p1

p2

p3

p4

p5

p0

p1

p2

p3 p4

p5

p6

36. If Kn decompose into triangles, then the number of triangles is E(Kn)/3 =

n(n − 1)/6. Hence n must be 6k + 1, 6k + 3, 6k + 4 or 6k. But each vertex v

contributes 2 edges in triangle, then deg(v) = n−1 must be even, So n = 6k+1

or 6k + 3.

37.

38.

39.

40. It’s easy to see the automorphism of Pn, Cn and Kn is 2, 2n and n!.

41.

42.

43.
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44.

45. First of all, let Eg(u, v) be the minimum length of cycle which contains edge

uv and EG(v) = {Eg(u, v)|u ∈ N(v)}. It is clearly that if there exists an

automorphism f with f(p) = q if and only if EG(p) = EG(q).

Now consider the graph below and given automorphism f . Since the graph

below contains only two 3-cycle {A, B, C} and {H, I, K}, we only need to check

EG(A), EG(B), EG(C), EG(H), EG(I), EG(K). Thus by carefully counting,

we have

EG(A) = {3, 6, 7}; EG(B) = {3, 4, 7}; EG(C) = {3, 4, 6}

EG(H) = {3, 5, 6}; EG(K) = {3, 4, 6}; EG(I) = {3, 4, 5}

So f(A) = A, f(B) = B, f(H) = H and f(I) = I and it is east to check the

other vertex v such that f(v) = v. Hence f must be identity.

A

B

C

D

E

F

G

H

J

K

L

I

46.

47.
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