
Exercise of Section 1.2

Written by Hsin-Jung, Wu.

1. (a) False. Consider 2k2.

(b) False. Consider P4.

(c) True. Use induction on the length ℓ of a closed trail W .

Basis step : ℓ = 3. Clearly, a closed trail with length 3 is 3-cycle.

Induction step : ℓ > 3. If W has no repeat vertex v, the we are done.

Otherwise, the edges Ei and vertices Vi between appearance of v (leaving

one copy of v), and the remaining edges and vertices yields closed trails

{Wi} with length less than W . So by induction hypothesis, we are done.

(d) False. Consider the graph 3-cycle, then the maximal trail is P2, but 3-cycle

is 2-regular.

2. Label K4 as below left.

(a) K4 contains a walk that is not a trail. Consider the walk as A, eAB, B, eBC ,

C, eCD, D, eDA, A, eAC , C, eCB, B, eBD, D

(b) K4 contains a trail that is not a closed and is not a path. Consider the

trail as A, eAB, B, eBC , C, ECD, D, EDA, A, eAC , C

(c) Since each vertex has even degree in a closed trail, and K4 is 3-regular,

thus the closed trail is a connected 2-regular subgraph of K4. Hence the

closed trail must be 3-cycle or 4-cycle.
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3. By the graph above right, then we can find G has 4 components and the red

line presents the maximum length of a path is 12.

Generally, consider the vertex set becomes {1, 2, . . . , n}, and obviously 1 is

isolated vertex. Let Gi be the subgraph induced by {pi, . . . , ⌊n/pi⌋pi} where

pi is prime number and less than n. Thus we have Gi and Gj are connected

if and only if V (Gi) > 1 and V (Gj) > 1. Hence there are k+2 components

where k = |{⌊n/pi⌋pi

∣
∣⌊n/pi⌋pi = 1}|, and at least k+1 components are isolated

vertex.

4. Let A and M be the adjacency and incidence matrix of G, vt correspond to the

tth row and tth column of A and correspond to the ith row of M , ek = vtvs

correspond to the kth column of M . Assume vtA and vtM be the adjacency and

incidence matrix of G − vt and ekA and ekM be the adjacency and incidence

matrix of G − ek. Thus

vtAi,j =







Ai,j if i < t, j < t
Ai+1,j if i ≥ t, j < t
Ai,j+1 if i < t, j ≥ t

Ai+1,j+1 if i ≥ t, j ≥ t

and vkM be M delete kth row and delete sth column for all vs adjacent to vk.

ekAi,j =

{
0 if i = t, j = s

Ai,j otherwise
ekMi,j =

{
0 if (i, j) = (s, k), (t, k)

Mi,j otherwise
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5. Suppose there is a component, say H , has no neighbor of v, then there is no

path u, v-path for all u in H . Hence G is not connected, contradiction.

6. The maximal path are {A, eAB, B, eBC , C, eCD, D} , {A, eAB, B, eBD, D, eDC , C}

and obviously they are both maximum path. The maximal clique is {A, B} and

{B, C, D} and {B, C, D} is also the maximum clique. The maximal indepen-

dent set is {A, C} and {A, D} and both they are also the maximum clique.

B

C

D

AeAB

eBC

eCD

eBD

7. Necessity: If G is not connected, then say G has components {Gi} and all Gi

are also bipartite. Assume Gi has bipartition Ai and Bi. Thus {Ai} and {Bi} is

a bipartition, {B1} ∪ {Ai}\{A1} and {A1} ∪ {Bi}\{B1} is another bipartition.

Sufficiency: If G is connected, fixed a vertex v and let a set A = {ui} where

length of ui, v-path is odd, and B collects the remaining vertex. If there exists

u, w ∈ A or B such that u, v are adjacent, then u, v-path, v, w-path and edge

uv forms a closed odd walk. By Lemma 1.2.15 and Theorem 1.2.18 we have

G is not bipartite, a contradiction. Hence this is a bipartition of G. If there

exists another bipartition of G, assume the bipartite sets are C, D and v ∈ C.

If there is u ∈ A ∩ C(u ∈ B ∩ D), that means there exists odd(even) u, v path

P . Let P induced by v = v0, v1, . . . , u = v2k+1(v2k), then easily we get v2i must

in D, that is v ∈ D, a contradiction. Since V (G) = A∪B = C ∪D, so we have

A = C and B = D.

8. By Theorem 1.2.16, every vertex has even degree, then Km,n is Eulerian if and

only if m and n are both even.

9. By definition, we have each open(closed) trail has are 2(0) vertices contribute
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odd degree and the other vertices contribute even degree. Since Petersen graph

has ten vertices and 3-regular, then It can be decompose into at least 5 trail

and the graph below is an example which decompose into exactly 5 trail(path).

A B C

D E F

eAB

eBE

10. (a) True. By Exercise 1.2.8, we have m = 2p, n = 2q. Thus the number of

edges is mn/2 = 2pq.

(b) False. The graph above right is an counterexample.

11. False. The graph above right is an counterexample. Obviously, there is no

Eulerian circuit C such that eBE and eAB appear consecutively.

12.

13. (a) Let w be the neighbor of u, then there exists w, v-walk of length ℓ−1, thus

there by induction hypothesis there is w, v-path. Hence edge uw+w, v-path

forms u, v-path.

(b) Consider shortest u, v-walk P in W , if P is not a path, there must exists

repeats vertex t in P . But delete the edges and vertices between appear-

ance of t (leaving one copy of t) will make a shorter path, hence P must

be path.

14.

15.

16.
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17. Let v = (1, 2, . . . , n), for every vertex u0 = (i1, i2, . . . , ik−1, ik = 1, ik+1, . . . , in),

we interchange ik−1, ik to be (i1, i2, . . . , ik = 1, ik−1, ik+1, . . . , in−1, in) thus repeat

this process, we can make u become u1 = (1, i1, i2, . . . , ik−2, ik−1, ik+1, . . . , in−1, in)

That means there is u0, u1-path. Now, by the same way as above, we can make

u2 become u2 = (1, 2, . . . , ). So use the same method, we can make u0 become

v, thus there exists u0, v-path, that means Gn is connected.

18. Let v = (0, . . . , 0
︸ ︷︷ ︸

k

) and u = (1, 0, . . . , 0
︸ ︷︷ ︸

k−1

), it is easy to see the vertex w with the

same parity of “0” as v(u), thus we have two vertices with the same parity of “0”

are connected. But v, u are not connected, the G has exactly two components.

19.

20. Given p, q in G − v, if p and q are in different components of G − v, then p

adjacent to q. Otherwise, there exists a vertex r s.t. r and p in the different

components, then p, r, q forms P3. So G − v is connected.

21. Necessity: Let v be the cut vertex of G, by Exercise 1.2.20, we have v is not cut

vertex of G. Suppose every vertex has degree at least 2, thus each component

has at least 2 vertices. If we delete any vertex u other than v, for each two

vertices a, b 6= v,

• if a, b in the different component of G − v, then a, b are adjacent in G;

• if they are in the same component K, choose vertex c in the different from

K, then a, c, b induced P3 in G;

• if a, v is not adjacent in G, then they are adjacent in G;

• if a, v is adjacent in G, choose vertex c in the different component from a

in, then a, c, v induced P3 in G;

Hence G has no cut vertex, so G ≇ G, contradiction.
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Sufficiency: If G has a vertex u with degree 1, say v is u’s neighbor. Thus easily

to see v is a cut vertex of G.

22. Necessity: If G has an partition A, B and for each two vertices ai ∈ A and

bj ∈ B such that ai and bj are not adjacent, then G must be disconnected.

Sufficiency: If each partition A, B of G, there exist two vertices a ∈ A and

b ∈ B such that a, b are adjacent, thus we only consider for two vertices u ∈ A

and v ∈ B has u, v-path formed by u, a-path, edge ab and b, v-path, hence G is

connected.

23. (a) True. Since simple connected graph G is not complete graph, then for each

vertex v there exists v, u-path P with length 2, that P is P3.

(b) False. The graph below is a counterexample, easy to see the orange edge

not belong to an induced subgraph isomorphic to P3.

24. Remark: I think we need G must be “connect”, otherwise 2K2 is a counterex-

ample. So I will prove it under the condition that G is connected.

Let v be the vertex with the minimum degree and {ui} be neighborhood of v.

If there exists another vertex w, then w must be adjacent some ui, thus w, ui, v

induced P3. Otherwise ui must be adjacent to uj for i 6= j. Thus G is complete

graph.

25. induction on number of vertices: Let n be the number of vertices.

Basis step : n = 2, trivial.

Induction step: Suppose n = k− 1 is hold, then we delete a vertex v of G, then

of G − v has k − 1 vertices and has no odd cycle. So by induction hypothesis,

G−v has partite sets A and B. Let u, w are neighbors of v, since u, v, w cannot

induce 3-cycle, then we can put u, w into the same partite set, say A. Thus A

and v ∪ B are both independent sets, hence G is bipartite graph.
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induction on number of edges: Let m be the number of edges.

Basis step : m = 0, trivial.

Induction step: Suppose m = k − 1 is hold, then we delete a edge uv of G,

then G− vu has k− 1 edges and has no odd cycle. So by induction hypothesis,

G− uv has partite sets A and B. If u, v are in different partite set, then we are

done. If u, v both in A (or B) and exist u, v-path, then u, v-path and edge uv

induce odd cycle, contradiction. Otherwise u, v both in A (or B) and has no

u, v-path, let

C = {t ∈ V (G)
∣
∣t, v-path is odd or t, u-path is even.}

D = {t ∈ V (G)
∣
∣t, v-path is even or t, u-path is odd.}

Thus C and D are both independent sets, hence G is bipartite graph.

26. Necessity: If G is bipartite and let A, B be its partite sets. For each supgraph

H let HA(HB) = H ∩ A(B). Thus easy to see that both HA, HB independent

and either |V (HA)| or |V (HB)| not less than |V (H)|/2.

Sufficiency: If G has a subgraph H isomorphic to odd cycle (say length 2k+1),

then easily to see every independent set of H consist at most k vertices, a

contradiction. Thus by Theorem 1.2.18, G is bipartite.

27. We use the hint to prove the following the statement.

If two permutation are adjacent, then their inversion has different

parity.

Let σ1 = (i1, . . . , ik−1, ik = x, ik+1, . . . , im−1, im = y, im+1, . . . in) and σ2 =

(i1, . . . , ik−1, im = y, ik+1, . . . , im−1, ik = x, im+1, . . . in) For convenience, say

x < y and let ℓ be the number of {ij
∣
∣k < j < m, x < ij < y}. Since switching

x, y will increase(decrease) 2ℓ+1 inversions, so we prove the statement above. If

Gn contains odd cycle C2j+1 induced by v1, v2, . . . v2j+1, then by the statement
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above we have v1, v2j+1 have the same parity of inversions. But v1, v2j+1 are

adjacent, contradiction. Thus by Theorem 1.2.18 we have Gn is bipartite.

28. Since the green vertices of the graph G left below has induced 5-cycle, thus we

must delete at least one edge to make it become bipartite. Thus delete the red

edge of G such that it becomes graph G′ right below. Since G′ is 2-colorable,

we have G′ is bipartite.

If we delete other edge e, then G − e must have induced 5-cycle, thus G′ is the

only one bipartite subgraph with 10 edges.

Since the green vertices of the graph H left below has induced 5-cycle, thus we

must delete at least one edge to make it become bipartite. But it is easy to

check for each edge e, H − e still contains induced 5-cycle, hence we need to

delete at least two edges. Thus delete the red edges of G such that it becomes

graph H ′ middle below. Since H ′ is 2-colorable, we have H ′ is bipartite.

The graph right below is another one bipartite subgraph with the same edges

as H ′.

29. If G is not bipartite, then G has odd cycle C, thus C is either C3 or contains

P4 as an induced subgraph, contradiction. Hence G is bipartite with partite

sets A, B. Suppose a ∈ A and b ∈ B such that a, b are non-adjacent, since G

is connected, there exists a, b-path P = {a, x, . . . , y, b} where x(y) ∈ B(A) that
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a, x(b, y) are adjacent. But P contains P3 as induced subgraph, contradiction.

Hence G must be biclique.

30. Use induction on k.

Basis step: k = 1, it’s obviously.

Induction step: Suppose k = r holds, for each entry i, j of Ar+1

Ar+1[i, j] =
n∑

k=1

Ar[i, k] × A[k, j]

Since each vi, vj-walk can be decomposed into vi, vk-walk and edge vk, vj , by in-

duction hypothesis Ar[i, k] is the number of vi, vk-walk of length r, then Ar+1[i, j]

is indeed the number of vi, vj-walk of r + 1.

G is bipartite (1)

⇐⇒G has no odd cycle (2)

⇐⇒G has no odd closed walk (3)

⇐⇒the diagonal entries of Ar is all 0, for each odd r (4)

(1) ⇐⇒ (2) by Theorem 1.2.18. Since an odd cycle is also an odd walk, and by

Lemma 1.2.15 we have (2) ⇐⇒ (3) Use the prove above, we have (3) ⇐⇒ (4).

Hence we complete the proof.

31.

32. The true statement should be

Every “maximum” trail in a even graph “has at most one nontrivial

component” is an Eulerian circuit.

Use Theorem 1.2.26 we have the graph G is Eulerian, then G has an Eulerian

circuit. But Eulerian circuit is a maximum trail (since it travels all edges), then

every maximum trail T must contain all edges of G, thus by definition T is

Eulerian circuit.
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33. induction on k: Let the graph be G and v, u be the vertices with odd degree.

Basis step : k = 1 we add an edge e = uv, thus G+e is even graph. By Theorem

1.2.26, G has an Eulerian circuit C = {v, . . . , . . . , u, e, v}, thus {v, . . . , . . . , u}

is a trail contains all edge of G.

Induction step : Suppose k = r holds. If k = r + 1 then we add an edge

e = uv, thus G + e has 2r odd vertices. By induction hypothesis, G + e can be

decomposed into r trails, T1, . . . , Tr and may assume trail T1 contains e. But

delete an edge of one trail can make it become two trails, thus say T1−e become

two trails T11, T12. Thus G is decomposed into the r+1 trails, T11, T12, T2, . . . , Tr.

induction on the number of edges: Let m be the number of edges, the

graph be G.

Basis step : m = 1, trivial, since G = K2.

Induction step : Suppose m = r holds, we consider m = r + 1.

(a) Suppose there exist some vertex v with degree 1 and say u as v’s neighbor,

thus G − v is connected and has r edges.

• If degG(u) is odd then G − v contains 2(k − 1) odd vertices, thus

by induction hypothesis, G − v can be decomposed into k − 1 trails

T1, . . . , Tk−1, thus G can be decomposed into k trails, T1, . . . , Tk−1 and

edge uv.

• If degG(u) is even then G−v contains 2k odd vertices, thus by induction

hypothesis, G − v can be decomposed into k trails T1, . . . , Tk. Since

degG−v(u) is odd, thus u must be an endpoint of some trails. May

assume u is an endpoint of T1, Thus add edge uv to T1, then G can

be decomposed into k trails, T1 ∪ {uv}, T2, . . . , Tk.

(b) Suppose each vertex has degree at least 2, by Lemma1 .2 .25 , G has a cycle

C. Since G is connected and has odd vertices, there exists a vertex v in C
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with degree at least 3. By Theorem 1.2.14 edge e = uv of this cycle is not

cut-edge then G − e is connected and has r edges.

• If both u, v are even vertex in G, then they are both odd in G−e, thus

G−e has 2(k+1) odd vertices. By induction hypothesis, G−e can be

decomposed into k + 1 trails T1, . . . , Tk+1. Since u, v are odd vertex in

G− e, then u, v must be endpoint of some trails. If u, v are endpoints

of distinct trails, say T1, T2, thus T1 ∪T2 ∪ e is a trail. Hence G can be

decomposed into k trails T1 ∪T2 ∪ e, T3, . . . , Tk+1. Otherwise u, v must

be endpoints of the same trail, say T1. Since degG−e(v) ≥ 2, then v

must be internal vertex of some Ti, say T2. Thus extend T2 be T ′

2 by

replacing v, u-tail, T1, and u, e, v with v. then G can be decomposed

into k trails, T ′

2, T3, . . . , Tk+1.

• If both u, v are odd vertex in G, then they are both even in G−e, thus

G−e has 2(k−1) odd vertices. By induction hypothesis, G−e can be

decomposed into k − 1 trails T1, . . . , Tk−1, thus G can be decomposed

into k trails, T1, . . . , Tk−1 and edge uv.

• Otherwise, may assume u is even, then G − e has 2k odd vertices, by

induction hypothesis, G−v can be decomposed into k trails T1, . . . , Tk.

Since degG−e(u) is odd, thus u must be an endpoint of some trails. May

assume u is an endpoint of T1, Thus add edge uv to T1, then G can

be decomposed into k trails, T1 ∪ {uv}, T2, . . . , Tk.

Yes, it’s true. Let G has components Gi and each Gi has 2ki odd vertices, thus

by prove above we have each Gi can be decomposed into ki trails. Thus a graph

G has 2
∑

ki odd vertices can be decomposed into
∑

ki trails.

34. Since B, C, D, E has degree 2, then the edges with the same color of any Eule-

rian circuit must appear consecutively. Then it is equivalent to count the ring
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permutation of 4 colors, so we have 4!/4 = 6 equivalent classes.

A

DCB E

F

35.

36.

37. Given u, v-path P = {u = p0, p1, . . . , pn = v} and v, w-path Q = {v =

q0, q1, . . . , qm = w}. Thus there exists u, v-walk W = {u = p0, p1, . . . , pn =

v = q0, q1, . . . , qm = w}. Hence by Lemma 1.2.5 there exists a u, w-path.

38. May assume G is connected and suppose there exists a smallest n such that

n-vertex graph G with at least n edges but G has no cycle. That is for each

m < n, m-vertex graph with at least m edges contains cycle. By Theorem 1.2.14

each edge e is a cut-edge of G, thus G − e has 2 components G1, G2, n vertices

and at least n − 1 edges. Clearly, Gi has no cycle. Let |V (Gi)| = ni, if each Gi

has at most ni−1 edges, then G−e has at most n1−1+n2−1 = n−2 < n−1

edges, contradiction. Thus may assume G1 has at least n1 edges, thus G1 has

cycle, contradiction. Hence G must have cycle.

39. Consider the maximal path P = {p1, . . . pn}, thus all p1’s neighbor must be in P ,

since P is not extendible. Thus assume pk and pm are neighbors of p1, where k <

m. If p1, . . . , pk, p1 is not even cycle, then either p1, . . . , pm, pm−1, . . . , pk, pk−1, . . . , p1

or p1, . . . , pm, pm−1, . . . , pk, p1 induced a even cycle.

40. Let P (Q) consist {p1, . . . , pn}({q1, . . . , qn}). Since G is connected and suppose

P, Q has no common vertex, then we have there exists pk, qm-path R such that

there is no pi, qj-path where k < i or k = i, m < j.
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• if k < n/2 and m < n/2, thus pn, . . . , pk, R and qm, . . . , qn induced a path

of length at least n − k + +1 + n − m > n, contradiction.

• if k < n/2 and m ≥ n/2, thus pn, . . . , pk, R and qm, . . . , q1 induced a path

of length at least n − k + 1 + m > n, contradiction.

• if k ≥ n/2 and m < n/2, thus p1, . . . , pk, R and qm, . . . , qn induced a path

of length at least k + n + 1 − m > n, contradiction.

• if k ≥ n/2 and m ≥ n/2, thus p1, . . . , pk, R and qm, . . . , qn, pn, . . . , pk, R

and qm, . . . , q1 induced a path of length at least k+1+n−m, n−k+1+m.

However one of k + 1 + n − m, n − k + 1 + m must be greater than n,

contradiction.

Hence P, Q must have a common vertex.

41. Consider the longest path P = {p1, . . . pn}, thus all p1’s neighbor must be in P ,

since P is not extendible. If there exists vertex u 6= p1, p3 which is p2’s neighbor,

then u’s neighbor must be in P , since P is not extendible. Thus G − p1, u is

still connected and p1, u has common neighbor p2. If there is such u, then all

p2’s neighbor must be in P . Thus G − p1, p2 is still connected and p1, p2 are

adjacent.

42. Choose a vertex of maximum degree k, say v, and let u1, . . . , uk be v’s neighbors.

Suppose there is another vertex w, since G is connected, then may assume w is

adjacent to v1. For each j > 1, if uj is not adjacent to u1, then w, u1, v, uj induce

P4 or C4. Hence u1 has k + 1 neighbors {v, u2, . . . , uk, w}, a contradiction. So

v must be adjacent to all other vertices.

43. Use induction on the number k of edges of connected simple graph G.

Basis step : k = 2. Obviously, a connected graph having 2 edges is P3.

Induction step : k > 2. Assume the claim is true for graph with even edges
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less than G. Since delete an edge will increase at most one component, thus

we delete edge uv of G. If G − uv is still connected, then we delete an edge

vw. If G − uv is disconnected, since G − uv has odd edges, then there is a

component with odd edges. May assume v in this component with odd edges,

then we delete an edge vw. Thus weather G−uv−vw is connected or not, each

component of G − uv − vw has even edges. So by induction hypothesis, each

component of G − uv − vw can be decomposed into P3 and u, v, w induced P3.

Hence we are done.

No, consider the graph 2K2.
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