Exercise of Section 1.2

Written by Hsin-Jung, Wu.

1. (a) False. Consider $2 k_{2}$.
(b) False. Consider P_{4}.
(c) True. Use induction on the length ℓ of a closed trail W.

Basis step : $\ell=3$. Clearly, a closed trail with length 3 is 3 -cycle.
Induction step : $\ell>3$. If W has no repeat vertex v, the we are done.
Otherwise, the edges E_{i} and vertices V_{i} between appearance of v (leaving one copy of v), and the remaining edges and vertices yields closed trails $\left\{W_{i}\right\}$ with length less than W. So by induction hypothesis, we are done.
(d) False. Consider the graph 3 -cycle, then the maximal trail is P_{2}, but 3 -cycle is 2-regular.
2. Label K_{4} as below left.
(a) K_{4} contains a walk that is not a trail. Consider the walk as $A, e_{A B}, B, e_{B C}$, $C, e_{C D}, D, e_{D A}, A, e_{A C}, C, e_{C B}, B, e_{B D}, D$
(b) K_{4} contains a trail that is not a closed and is not a path. Consider the trail as $A, e_{A B}, B, e_{B C}, C, E_{C D}, D, E_{D A}, A, e_{A C}, C$
(c) Since each vertex has even degree in a closed trail, and K_{4} is 3-regular, thus the closed trail is a connected 2-regular subgraph of K_{4}. Hence the closed trail must be 3-cycle or 4-cycle.

3. By the graph above right, then we can find G has 4 components and the red line presents the maximum length of a path is 12 .

Generally, consider the vertex set becomes $\{1,2, \ldots, n\}$, and obviously 1 is isolated vertex. Let G_{i} be the subgraph induced by $\left\{p_{i}, \ldots,\left\lfloor n / p_{i}\right\rfloor p_{i}\right\}$ where p_{i} is prime number and less than n. Thus we have G_{i} and G_{j} are connected if and only if $V\left(G_{i}\right)>1$ and $V\left(G_{j}\right)>1$. Hence there are $k+2$ components where $k=\left|\left\{\left\lfloor n / p_{i}\right\rfloor p_{i} \mid\left\lfloor n / p_{i}\right\rfloor p_{i}=1\right\}\right|$, and at least $k+1$ components are isolated vertex.
4. Let A and M be the adjacency and incidence matrix of G, v_{t} correspond to the t th row and t th column of A and correspond to the i th row of $M, e_{k}=v_{t} v_{s}$ correspond to the k th column of M. Assume $v_{t} A$ and $v_{t} M$ be the adjacency and incidence matrix of $G-v_{t}$ and $e_{k} A$ and $e_{k} M$ be the adjacency and incidence matrix of $G-e_{k}$. Thus

$$
v_{t} A_{i, j}=\left\{\begin{array}{cl}
A_{i, j} & \text { if } i<t, j<t \\
A_{i+1, j} & \text { if } i \geq t, j<t \\
A_{i, j+1} & \text { if } i<t, j \geq t \\
A_{i+1, j+1} & \text { if } i \geq t, j \geq t
\end{array}\right.
$$

and $v_{k} M$ be M delete k th row and delete s th column for all v_{s} adjacent to v_{k}.

$$
e_{k} A_{i, j}=\left\{\begin{array}{cc}
0 & \text { if } i=t, j=s \\
A_{i, j} & \text { otherwise }
\end{array} e_{k} M_{i, j}=\left\{\begin{array}{cc}
0 & \text { if }(i, j)=(s, k),(t, k) \\
M_{i, j} & \text { otherwise }
\end{array}\right.\right.
$$

5. Suppose there is a component, say H, has no neighbor of v, then there is no path u, v-path for all u in H. Hence G is not connected, contradiction.
6. The maximal path are $\left\{A, e_{A B}, B, e_{B C}, C, e_{C D}, D\right\},\left\{A, e_{A B}, B, e_{B D}, D, e_{D C}, C\right\}$ and obviously they are both maximum path. The maximal clique is $\{A, B\}$ and $\{B, C, D\}$ and $\{B, C, D\}$ is also the maximum clique. The maximal independent set is $\{A, C\}$ and $\{A, D\}$ and both they are also the maximum clique.

7. Necessity: If G is not connected, then say G has components $\left\{G_{i}\right\}$ and all G_{i} are also bipartite. Assume G_{i} has bipartition A_{i} and B_{i}. Thus $\left\{A_{i}\right\}$ and $\left\{B_{i}\right\}$ is a bipartition, $\left\{B_{1}\right\} \cup\left\{A_{i}\right\} \backslash\left\{A_{1}\right\}$ and $\left\{A_{1}\right\} \cup\left\{B_{i}\right\} \backslash\left\{B_{1}\right\}$ is another bipartition. Sufficiency: If G is connected, fixed a vertex v and let a set $A=\left\{u_{i}\right\}$ where length of u_{i}, v-path is odd, and B collects the remaining vertex. If there exists $u, w \in A$ or B such that u, v are adjacent, then u, v-path, v, w-path and edge $u v$ forms a closed odd walk. By Lemma 1.2.15 and Theorem 1.2.18 we have G is not bipartite, a contradiction. Hence this is a bipartition of G. If there exists another bipartition of G, assume the bipartite sets are C, D and $v \in C$. If there is $u \in A \cap C(u \in B \cap D)$, that means there exists odd(even) u, v path P. Let P induced by $v=v_{0}, v_{1}, \ldots, u=v_{2 k+1}\left(v_{2 k}\right)$, then easily we get $v_{2 i}$ must in D, that is $v \in D$, a contradiction. Since $V(G)=A \cup B=C \cup D$, so we have $A=C$ and $B=D$.
8. By Theorem 1.2.16, every vertex has even degree, then $K_{m, n}$ is Eulerian if and only if m and n are both even.
9. By definition, we have each open(closed) trail has are 2(0) vertices contribute
odd degree and the other vertices contribute even degree. Since Petersen graph has ten vertices and 3 -regular, then It can be decompose into at least 5 trail and the graph below is an example which decompose into exactly 5 trail(path).

10. (a) True. By Exercise 1.2.8, we have $m=2 p, n=2 q$. Thus the number of edges is $m n / 2=2 p q$.
(b) False. The graph above right is an counterexample.
11. False. The graph above right is an counterexample. Obviously, there is no Eulerian circuit C such that $e_{B E}$ and $e_{A B}$ appear consecutively.
12.
13. (a) Let w be the neighbor of u, then there exists w, v-walk of length $\ell-1$, thus there by induction hypothesis there is w, v-path. Hence edge $u w+w, v$-path forms u, v-path.
(b) Consider shortest u, v-walk P in W, if P is not a path, there must exists repeats vertex t in P. But delete the edges and vertices between appearance of t (leaving one copy of t) will make a shorter path, hence P must be path
14.
15.
16.
17. Let $v=(1,2, \ldots, n)$, for every vertex $u_{0}=\left(i_{1}, i_{2}, \ldots, i_{k-1}, i_{k}=1, i_{k+1}, \ldots, i_{n}\right)$, we interchange i_{k-1}, i_{k} to be $\left(i_{1}, i_{2}, \ldots, i_{k}=1, i_{k-1}, i_{k+1}, \ldots, i_{n-1}, i_{n}\right)$ thus repeat this process, we can make u become $u_{1}=\left(1, i_{1}, i_{2}, \ldots, i_{k-2}, i_{k-1}, i_{k+1}, \ldots, i_{n-1}, i_{n}\right)$ That means there is u_{0}, u_{1}-path. Now, by the same way as above, we can make u_{2} become $u_{2}=(1,2, \ldots$,$) . So use the same method, we can make u_{0}$ become v, thus there exists u_{0}, v-path, that means G_{n} is connected.
18. Let $v=(\underbrace{0, \ldots, 0}_{k})$ and $u=(1, \underbrace{0, \ldots, 0}_{k-1})$, it is easy to see the vertex w with the same parity of " 0 " as $v(u)$, thus we have two vertices with the same parity of " 0 " are connected. But v, u are not connected, the G has exactly two components.
19.
20. Given p, q in $\bar{G}-v$, if p and q are in different components of $G-v$, then p adjacent to q. Otherwise, there exists a vertex r s.t. r and p in the different components, then p, r, q forms P_{3}. So $\bar{G}-v$ is connected.
21. Necessity: Let v be the cut vertex of G, by Exercise 1.2.20, we have v is not cut vertex of \bar{G}. Suppose every vertex has degree at least 2 , thus each component has at least 2 vertices. If we delete any vertex u other than v, for each two vertices $a, b \neq v$,

- if a, b in the different component of $G-v$, then a, b are adjacent in \bar{G};
- if they are in the same component K, choose vertex c in the different from K, then a, c, b induced P_{3} in \bar{G};
- if a, v is not adjacent in G, then they are adjacent in \bar{G};
- if a, v is adjacent in G, choose vertex c in the different component from a in, then a, c, v induced P_{3} in \bar{G};

Hence \bar{G} has no cut vertex, so $\bar{G} \not \not G$, contradiction.

Sufficiency: If G has a vertex u with degree 1 , say v is u 's neighbor. Thus easily to see v is a cut vertex of G.
22. Necessity: If G has an partition A, B and for each two vertices $a_{i} \in A$ and $b_{j} \in B$ such that a_{i} and b_{j} are not adjacent, then G must be disconnected. Sufficiency: If each partition A, B of G, there exist two vertices $a \in A$ and $b \in B$ such that a, b are adjacent, thus we only consider for two vertices $u \in A$ and $v \in B$ has u, v-path formed by u, a-path, edge $a b$ and b, v-path, hence G is connected.
23. (a) True. Since simple connected graph G is not complete graph, then for each vertex v there exists v, u-path P with length 2 , that P is P_{3}.
(b) False. The graph below is a counterexample, easy to see the orange edge not belong to an induced subgraph isomorphic to P_{3}.

24. Remark: I think we need G must be "connect", otherwise $2 K_{2}$ is a counterexample. So I will prove it under the condition that G is connected.

Let v be the vertex with the minimum degree and $\left\{u_{i}\right\}$ be neighborhood of v. If there exists another vertex w, then w must be adjacent some u_{i}, thus w, u_{i}, v induced P_{3}. Otherwise u_{i} must be adjacent to u_{j} for $i \neq j$. Thus G is complete graph.
25. induction on number of vertices: Let n be the number of vertices. Basis step : $n=2$, trivial.

Induction step: Suppose $n=k-1$ is hold, then we delete a vertex v of G, then of $G-v$ has $k-1$ vertices and has no odd cycle. So by induction hypothesis, $G-v$ has partite sets A and B. Let u, w are neighbors of v, since u, v, w cannot induce 3 -cycle, then we can put u, w into the same partite set, say A. Thus A and $v \cup B$ are both independent sets, hence G is bipartite graph.
induction on number of edges: Let m be the number of edges.
Basis step : $m=0$, trivial.
Induction step: Suppose $m=k-1$ is hold, then we delete a edge $u v$ of G, then $G-v u$ has $k-1$ edges and has no odd cycle. So by induction hypothesis, $G-u v$ has partite sets A and B. If u, v are in different partite set, then we are done. If u, v both in A (or B) and exist u, v-path, then u, v-path and edge $u v$ induce odd cycle, contradiction. Otherwise u, v both in A (or B) and has no u, v-path, let

$$
\begin{aligned}
& C=\{t \in V(G) \mid t, v \text {-path is odd or } t, u \text {-path is even. }\} \\
& D=\{t \in V(G) \mid t, v \text {-path is even or } t, u \text {-path is odd. }\}
\end{aligned}
$$

Thus C and D are both independent sets, hence G is bipartite graph.
26. Necessity: If G is bipartite and let A, B be its partite sets. For each supgraph H let $H_{A}\left(H_{B}\right)=H \cap A(B)$. Thus easy to see that both H_{A}, H_{B} independent and either $\left|V\left(H_{A}\right)\right|$ or $\left|V\left(H_{B}\right)\right|$ not less than $|V(H)| / 2$.

Sufficiency: If G has a subgraph H isomorphic to odd cycle (say length $2 k+1$), then easily to see every independent set of H consist at most k vertices, a contradiction. Thus by Theorem 1.2.18, G is bipartite.
27. We use the hint to prove the following the statement.

If two permutation are adjacent, then their inversion has different parity.

Let $\sigma_{1}=\left(i_{1}, \ldots, i_{k-1}, i_{k}=x, i_{k+1}, \ldots, i_{m-1}, i_{m}=y, i_{m+1}, \ldots i_{n}\right)$ and $\sigma_{2}=$ $\left(i_{1}, \ldots, i_{k-1}, i_{m}=y, i_{k+1}, \ldots, i_{m-1}, i_{k}=x, i_{m+1}, \ldots i_{n}\right)$ For convenience, say $x<y$ and let ℓ be the number of $\left\{i_{j} \mid k<j<m, x<i_{j}<y\right\}$. Since switching x, y will increase(decrease) $2 \ell+1$ inversions, so we prove the statement above. If G_{n} contains odd cycle $C_{2 j+1}$ induced by $v_{1}, v_{2}, \ldots v_{2 j+1}$, then by the statement
above we have $v_{1}, v_{2 j+1}$ have the same parity of inversions. But $v_{1}, v_{2 j+1}$ are adjacent, contradiction. Thus by Theorem 1.2.18 we have G_{n} is bipartite.
28. Since the green vertices of the graph G left below has induced 5 -cycle, thus we must delete at least one edge to make it become bipartite. Thus delete the red edge of G such that it becomes graph G^{\prime} right below. Since G^{\prime} is 2-colorable, we have G^{\prime} is bipartite.

If we delete other edge e, then $G-e$ must have induced 5 -cycle, thus G^{\prime} is the only one bipartite subgraph with 10 edges.

Since the green vertices of the graph H left below has induced 5 -cycle, thus we must delete at least one edge to make it become bipartite. But it is easy to check for each edge $e, H-e$ still contains induced 5-cycle, hence we need to delete at least two edges. Thus delete the red edges of G such that it becomes graph H^{\prime} middle below. Since H^{\prime} is 2-colorable, we have H^{\prime} is bipartite.

The graph right below is another one bipartite subgraph with the same edges as H^{\prime}.

29. If G is not bipartite, then G has odd cycle C, thus C is either C_{3} or contains P_{4} as an induced subgraph, contradiction. Hence G is bipartite with partite sets A, B. Suppose $a \in A$ and $b \in B$ such that a, b are non-adjacent, since G is connected, there exists a, b-path $P=\{a, x, \ldots, y, b\}$ where $x(y) \in B(A)$ that
$a, x(b, y)$ are adjacent. But P contains P_{3} as induced subgraph, contradiction. Hence G must be biclique.
30. Use induction on k.

Basis step: $k=1$, it's obviously.
Induction step: Suppose $k=r$ holds, for each entry i, j of A^{r+1}

$$
A^{r+1}[i, j]=\sum_{k=1}^{n} A^{r}[i, k] \times A[k, j]
$$

Since each v_{i}, v_{j}-walk can be decomposed into v_{i}, v_{k}-walk and edge v_{k}, v_{j}, by induction hypothesis $A^{r}[i, k]$ is the number of v_{i}, v_{k}-walk of length r, then $A^{r+1}[i, j]$ is indeed the number of v_{i}, v_{j}-walk of $r+1$.

$$
\begin{equation*}
G \text { is bipartite } \tag{1}
\end{equation*}
$$

$\Longleftrightarrow G$ has no odd cycle
$\Longleftrightarrow G$ has no odd closed walk
\Longleftrightarrow the diagonal entries of A^{r} is all 0 , for each odd r
$(1) \Longleftrightarrow(2)$ by Theorem 1.2.18. Since an odd cycle is also an odd walk, and by Lemma 1.2.15 we have $(2) \Longleftrightarrow(3)$ Use the prove above, we have $(3) \Longleftrightarrow(4)$. Hence we complete the proof.
31.
32. The true statement should be

Every "maximum" trail in a even graph "has at most one nontrivial component" is an Eulerian circuit.

Use Theorem 1.2.26 we have the graph G is Eulerian, then G has an Eulerian circuit. But Eulerian circuit is a maximum trail (since it travels all edges), then every maximum trail T must contain all edges of G, thus by definition T is Eulerian circuit.
33. induction on \mathbf{k} : Let the graph be G and v, u be the vertices with odd degree. Basis step : $k=1$ we add an edge $e=u v$, thus $G+e$ is even graph. By Theorem 1.2.26, G has an Eulerian circuit $C=\{v, \ldots, \ldots, u, e, v\}$, thus $\{v, \ldots, \ldots, u\}$ is a trail contains all edge of G.

Induction step : Suppose $k=r$ holds. If $k=r+1$ then we add an edge $e=u v$, thus $G+e$ has $2 r$ odd vertices. By induction hypothesis, $G+e$ can be decomposed into r trails, T_{1}, \ldots, T_{r} and may assume trail T_{1} contains e. But delete an edge of one trail can make it become two trails, thus say $T_{1}-e$ become two trails T_{11}, T_{12}. Thus G is decomposed into the $r+1$ trails, $T_{11}, T_{12}, T_{2}, \ldots, T_{r}$. induction on the number of edges: Let m be the number of edges, the graph be G.

Basis step : $m=1$, trivial, since $G=K_{2}$.
Induction step : Suppose $m=r$ holds, we consider $m=r+1$.
(a) Suppose there exist some vertex v with degree 1 and say u as v 's neighbor, thus $G-v$ is connected and has r edges.

- If $\operatorname{deg}_{G}(u)$ is odd then $G-v$ contains $2(k-1)$ odd vertices, thus by induction hypothesis, $G-v$ can be decomposed into $k-1$ trails T_{1}, \ldots, T_{k-1}, thus G can be decomposed into k trails, T_{1}, \ldots, T_{k-1} and edge $u v$.
- If $\operatorname{deg}_{G}(u)$ is even then $G-v$ contains $2 k$ odd vertices, thus by induction hypothesis, $G-v$ can be decomposed into k trails T_{1}, \ldots, T_{k}. Since $\operatorname{deg}_{G-v}(u)$ is odd, thus u must be an endpoint of some trails. May assume u is an endpoint of T_{1}, Thus add edge $u v$ to T_{1}, then G can be decomposed into k trails, $T_{1} \cup\{u v\}, T_{2}, \ldots, T_{k}$.
(b) Suppose each vertex has degree at least 2, by Lemma1.2.25, G has a cycle C. Since G is connected and has odd vertices, there exists a vertex v in C
with degree at least 3. By Theorem 1.2.14 edge $e=u v$ of this cycle is not cut-edge then $G-e$ is connected and has r edges.
- If both u, v are even vertex in G, then they are both odd in $G-e$, thus $G-e$ has $2(k+1)$ odd vertices. By induction hypothesis, $G-e$ can be decomposed into $k+1$ trails T_{1}, \ldots, T_{k+1}. Since u, v are odd vertex in $G-e$, then u, v must be endpoint of some trails. If u, v are endpoints of distinct trails, say T_{1}, T_{2}, thus $T_{1} \cup T_{2} \cup e$ is a trail. Hence G can be decomposed into k trails $T_{1} \cup T_{2} \cup e, T_{3}, \ldots, T_{k+1}$. Otherwise u, v must be endpoints of the same trail, say T_{1}. Since $\operatorname{deg}_{G-e}(v) \geq 2$, then v must be internal vertex of some T_{i}, say T_{2}. Thus extend T_{2} be T_{2}^{\prime} by replacing v, u-tail, T_{1}, and u, e, v with v. then G can be decomposed into k trails, $T_{2}^{\prime}, T_{3}, \ldots, T_{k+1}$.
- If both u, v are odd vertex in G, then they are both even in $G-e$, thus $G-e$ has $2(k-1)$ odd vertices. By induction hypothesis, $G-e$ can be decomposed into $k-1$ trails T_{1}, \ldots, T_{k-1}, thus G can be decomposed into k trails, T_{1}, \ldots, T_{k-1} and edge $u v$.
- Otherwise, may assume u is even, then $G-e$ has $2 k$ odd vertices, by induction hypothesis, $G-v$ can be decomposed into k trails T_{1}, \ldots, T_{k}. Since $d e g_{G-e}(u)$ is odd, thus u must be an endpoint of some trails. May assume u is an endpoint of T_{1}, Thus add edge $u v$ to T_{1}, then G can be decomposed into k trails, $T_{1} \cup\{u v\}, T_{2}, \ldots, T_{k}$.

Yes, it's true. Let G has components G_{i} and each G_{i} has $2 k_{i}$ odd vertices, thus by prove above we have each G_{i} can be decomposed into k_{i} trails. Thus a graph G has $2 \sum k_{i}$ odd vertices can be decomposed into $\sum k_{i}$ trails.
34. Since B, C, D, E has degree 2, then the edges with the same color of any Eulerian circuit must appear consecutively. Then it is equivalent to count the ring
permutation of 4 colors, so we have $4!/ 4=6$ equivalent classes.

35.
36.
37. Given u, v-path $P=\left\{u=p_{0}, p_{1}, \ldots, p_{n}=v\right\}$ and v, w-path $Q=\{v=$ $\left.q_{0}, q_{1}, \ldots, q_{m}=w\right\}$. Thus there exists u, v-walk $W=\left\{u=p_{0}, p_{1}, \ldots, p_{n}=\right.$ $\left.v=q_{0}, q_{1}, \ldots, q_{m}=w\right\}$. Hence by Lemma 1.2.5 there exists a u, w-path.
38. May assume G is connected and suppose there exists a smallest n such that n-vertex graph G with at least n edges but G has no cycle. That is for each $m<n, m$-vertex graph with at least m edges contains cycle. By Theorem 1.2.14 each edge e is a cut-edge of G, thus $G-e$ has 2 components G_{1}, G_{2}, n vertices and at least $n-1$ edges. Clearly, G_{i} has no cycle. Let $\left|V\left(G_{i}\right)\right|=n_{i}$, if each G_{i} has at most $n_{i}-1$ edges, then $G-e$ has at most $n_{1}-1+n_{2}-1=n-2<n-1$ edges, contradiction. Thus may assume G_{1} has at least n_{1} edges, thus G_{1} has cycle, contradiction. Hence G must have cycle.
39. Consider the maximal path $P=\left\{p_{1}, \ldots p_{n}\right\}$, thus all p_{1} 's neighbor must be in P, since P is not extendible. Thus assume p_{k} and p_{m} are neighbors of p_{1}, where $k<$ m. If $p_{1}, \ldots, p_{k}, p_{1}$ is not even cycle, then either $p_{1}, \ldots, p_{m}, p_{m-1}, \ldots, p_{k}, p_{k-1}, \ldots, p_{1}$ or $p_{1}, \ldots, p_{m}, p_{m-1}, \ldots, p_{k}, p_{1}$ induced a even cycle.
40. Let $P(Q)$ consist $\left\{p_{1}, \ldots, p_{n}\right\}\left(\left\{q_{1}, \ldots, q_{n}\right\}\right)$. Since G is connected and suppose P, Q has no common vertex, then we have there exists p_{k}, q_{m}-path R such that there is no p_{i}, q_{j}-path where $k<i$ or $k=i, m<j$.

- if $k<n / 2$ and $m<n / 2$, thus $p_{n}, \ldots, p_{k}, \mathrm{R}$ and q_{m}, \ldots, q_{n} induced a path of length at least $n-k++1+n-m>n$, contradiction.
- if $k<n / 2$ and $m \geq n / 2$, thus $p_{n}, \ldots, p_{k}, \mathrm{R}$ and q_{m}, \ldots, q_{1} induced a path of length at least $n-k+1+m>n$, contradiction.
- if $k \geq n / 2$ and $m<n / 2$, thus $p_{1}, \ldots, p_{k}, \mathrm{R}$ and q_{m}, \ldots, q_{n} induced a path of length at least $k+n+1-m>n$, contradiction.
- if $k \geq n / 2$ and $m \geq n / 2$, thus $p_{1}, \ldots, p_{k}, \mathrm{R}$ and $q_{m}, \ldots, q_{n}, p_{n}, \ldots, p_{k}, \mathrm{R}$ and q_{m}, \ldots, q_{1} induced a path of length at least $k+1+n-m, n-k+1+m$. However one of $k+1+n-m, n-k+1+m$ must be greater than n, contradiction.

Hence P, Q must have a common vertex.
41. Consider the longest path $P=\left\{p_{1}, \ldots p_{n}\right\}$, thus all p_{1} 's neighbor must be in P, since P is not extendible. If there exists vertex $u \neq p_{1}, p_{3}$ which is p_{2} 's neighbor, then u 's neighbor must be in P, since P is not extendible. Thus $G-p_{1}, u$ is still connected and p_{1}, u has common neighbor p_{2}. If there is such u, then all p_{2} 's neighbor must be in P. Thus $G-p_{1}, p_{2}$ is still connected and p_{1}, p_{2} are adjacent.
42. Choose a vertex of maximum degree k, say v, and let u_{1}, \ldots, u_{k} be v 's neighbors. Suppose there is another vertex w, since G is connected, then may assume w is adjacent to v_{1}. For each $j>1$, if u_{j} is not adjacent to u_{1}, then w, u_{1}, v, u_{j} induce P_{4} or C_{4}. Hence u_{1} has $k+1$ neighbors $\left\{v, u_{2}, \ldots, u_{k}, w\right\}$, a contradiction. So v must be adjacent to all other vertices.
43. Use induction on the number k of edges of connected simple graph G. Basis step : $k=2$. Obviously, a connected graph having 2 edges is P_{3}. Induction step : $k>2$. Assume the claim is true for graph with even edges
less than G. Since delete an edge will increase at most one component, thus we delete edge $u v$ of G. If $G-u v$ is still connected, then we delete an edge $v w$. If $G-u v$ is disconnected, since $G-u v$ has odd edges, then there is a component with odd edges. May assume v in this component with odd edges, then we delete an edge $v w$. Thus weather $G-u v-v w$ is connected or not, each component of $G-u v-v w$ has even edges. So by induction hypothesis, each component of $G-u v-v w$ can be decomposed into P_{3} and u, v, w induced P_{3}. Hence we are done.

No, consider the graph $2 K_{2}$.

