Skip to main content

今天想的一題高微

2004/02/20 00:49:48 於未來最舊小棧留下的問題,終於解了。

題目

Prove

an=2nk=1n1kp,1<p<2a_n = 2\sqrt{n} - \sum^n_{k=1}\frac{1}{\sqrt{k}}\to p, 1<p<2

解答

{an}\lbrace a_n\rbrace is monotone increasing, because

an+1an=2n+12n1n+1=2n+1+n1n+1>2n+1+n+11n+1=0\begin{align*} a_{n+1} - a_{n} &= 2\sqrt{n+1} - 2\sqrt{n} - \frac{1}{\sqrt{n+1}}\\ &=\frac{2}{\sqrt{n+1}+\sqrt{n}}- \frac{1}{\sqrt{n+1}}\\ &>\frac{2}{\sqrt{n+1}+\sqrt{n+1}}- \frac{1}{\sqrt{n+1}}=0 \end{align*}

Since 1x\frac{1}{\sqrt{x}} is a Convex function and by Trapezoidal rule, we have

k=1n1k12+1n+1=12k=1n(1k+1k+1)1n+11kdk=2n+12\sum^n_{k=1}\frac{1}{\sqrt{k}}-\frac{1}{2}+\frac{1}{\sqrt{n+1}}=\frac{1}{2}\sum^n_{k=1}(\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}})\geq\int^{n+1}_{1}\frac{1}{\sqrt{k}}\mathrm{d}k=2\sqrt{n+1}-2

then

2n2n+1+212+1n+12nk=1n1k    32(2n+12n1n+1)an    32an+an+1an=an+1>a1=1\begin{aligned} &2\sqrt{n}-2\sqrt{n+1}+2-\frac{1}{2}+\frac{1}{\sqrt{n+1}}\geq2\sqrt{n}-\sum^n_{k=1}\frac{1}{\sqrt {k}}\\ &\implies\frac{3}{2}-(2\sqrt{n+1} - 2\sqrt{n} - \frac{1}{\sqrt{n+1}})\geq a_n\\ &\implies\frac{3}{2}\geq a_n+a_{n+1}-a_n=a_{n+1}>a_1=1 \end{aligned}

Hence by Monotone convergence theorem, we have

1<limnan32<21 < \lim_{n\to\infty}a_n\leq\frac{3}{2}<2

後記

當年的做法跟 這篇 發文者一樣,只走到 1<limnan21 < \lim\limits_{n\to\infty}a_n\leq2,後來就不了了之。